
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 4, APRIL 2018 1059

Stochastic Consentability of Linear Systems
With Time Delays and Multiplicative Noises

Xiaofeng Zong, Tao Li , Senior Member, IEEE, George Yin , Fellow, IEEE, Le Yi Wang , Fellow, IEEE,
and Ji-Feng Zhang , Fellow, IEEE

Abstract—This paper develops stochastic consentability
of linear multiagent systems with time delays and multi-
plicative noises. First, the stochastic stability for stochastic
differential delay equations driven by multiplicative noises
is examined, and the existence of the positive definite so-
lution for a class of generalized algebraic Riccati equations
(GAREs) is established. Then, sufficient conditions are de-
duced for the mean square and almost sure consentability
and stabilization based on the developed stochastic stabil-
ity and GAREs. Consensus protocols are designed for linear
multiagent systems with undirected and leader-following
topologies. It is revealed that multiagent consentability de-
pends on certain characterizing system parameters, in-
cluding linear system dynamics, communication graph,
channel uncertainties, and time delay of the deterministic
term. It is shown that a second-order integrator multiagent
system is unconditionally mean square and almost surely
consentable for any given noise intensities and time delay,
and that the mean square and almost sure consensus can
be achieved by carefully choosing the control gain accord-
ing to certain explicit conditions.
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I. INTRODUCTION

MULTIAGENT systems have attracted much attention in
recent years. The research progress in such systems has

provided valuable insights and benefits in understanding, de-
signing, and implementing distributed controllers for such sys-
tems; see [1]–[3]. To date, the consensus problem of perfect
models, which assume that each agent can obtain its neighbor in-
formation timely and precisely, has reached a reasonable degree
of maturity; see [4] for example. However, networked systems in
practical applications often operate in uncertain communication
environments and are inevitably subjected to communication
latency and measurement noises [5]–[7]. Hence, time delays
and measurement noises should be taken into consideration for
examining multiagent consensus problems.

In the literature, Olfati-Saber and Murray [7] gave optimal
delay bounds for consensus under undirected graphs. Bliman
and Ferrari-Trecate [8] studied average consensus problems for
undirected networks with constant, time varying and nonuni-
form time delays, and presented some sufficient conditions for
average consensus. Different types of time delays (communi-
cation delay, identical self-delay and different self-delay) were
investigated in [9] for output consensus. These works have fo-
cused on first-order multiagent systems. For second-order mul-
tiagent systems, Yu et al. [10] gave necessary and sufficient
consensus conditions related to time delays. Zhou and Lin [11]
showed that consensus problems of linear multiagent systems
with input and communication delays could also be solved by
truncated predictor feedback protocols.

For multiplicative noises (or state-dependent noise), Ni and
Li [12] studied consensus problems of continuous-time systems
in which the noise intensity functions are the absolute values of
relative states. Li et al. [13] revealed that multiplicative noises
may enhance the almost sure consensus, but may have damaging
effect on the mean square consensus, indicating a distinct fea-
ture from additive noises which are always destabilizing factors.
These results have been established for first-order multiagent
systems. For linear discrete-time systems, Li and Chen [14] gave
the mean square consensus analysis by solving a modified alge-
braic Riccati equation. When the time delay and multiplicative
noise coexist, stochastic consensus conditions were examined
in [15] for second-order discrete-time models. However, little is
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known about the consensus for general continuous-time linear
multiagent systems with time delays and multiplicative noises.

All the aforementioned works have focused on the issue
of convergence to consensus, which is concerned with con-
ditions on the given control protocols under which the agents
can achieve certain agreements asymptotically. However, they
do not address the issue of consentability. Consentability is
concerned with conditions on system parameters under which a
consensus protocol exists, and is of great importance, both theo-
retically and practically, for cooperative control protocol devel-
opment such as flocking behavior, agent rendezvous, and robot
coordination. Note that Ma and Zhang [16] considered general
linear continuous-time multiagent systems and obtained nec-
essary and sufficient conditions on system parameters for con-
sentability. This problem was then generalized in [17] to the case
with input constraints and uncertain initial conditions in terms
of linear matrix inequalities (LMIs). For discrete-time models,
Zhang and Tian [18] investigated second-order multiagent sys-
tems with Markov-switching topologies, and proved that such
networked systems are mean square consentable under linear
consensus protocols if and only if the union of the graphs in
the switching topology has globally reachable nodes. For linear
multiagent systems, You and Xie [19] obtained necessary and
sufficient conditions for single-input multiagent consentability
and revealed how the agent dynamic, network topology, and
communication data rate affect consentability. Gu et al. [20]
employed a properly designed dynamic filter into local con-
trol protocols to relax consensusability conditions. For the issue
of structural controllability of multiagent systems, we refer the
readers to [21] and references therein. At present, consentability
for multiagent systems with multiplicative noises, even for the
delay-free case, remains an open problem, due to the lack of
suitable techniques to treat intrinsic complications from general
linear systems.

This paper aims to establish the mean square and almost sure
consentability and develop the consensus protocol design of
linear multiagent systems with time delays and multiplicative
noises. Our results accommodate different time delays in deter-
ministic (drift) and stochastic (diffusion) terms. Departing from
the feedback structure of [22], [23], where each agent’s state
feedback was used, our consensus protocol requires only lo-
cal relative-state measurements. In this case, each agent’s state
is not locally stabilized, leading to a more difficult consensus
analysis problem. It can be verified that a consensus problem is
equivalent to the stability problem of the corresponding closed-
loop system. Hence, for consensus analysis under measurement
noises, the key is to establish stochastic stability of the corre-
sponding stochastic equations driven by additive or multiplica-
tive noises, see [12]–[15], [24]. However, for linear multiagent
systems of orders higher than one, multiplicative noises are of-
ten degenerate and the existing stochastic stability theory does
not involve the issues for such stochastic differential equations.
Time delays add further difficulty in deriving consentability
conditions and consensus protocols of linear multiagent sys-
tems with multiplicative noises. New ideas and techniques are
needed to resolve these difficulties. In this paper, stochastic
stability and a generalized algebraic Riccati equation (GARE)
are established for obtaining multiagent consentability and

designing control protocols under time delays and measurement
noises. The contribution of this paper is detailed as follows.

1) Two new techniques (Theorems II.1 and II.2) are devel-
oped to study the multiagent consentability and consensus
under measurement noises and time delays. We first ex-
ploit the degenerate Lyapunov functional [25] to establish
the mean square and almost sure exponential stability cri-
teria of stochastic differential delay equations (SDDEs).
We show that the stability is independent of the time delay
with stochastic influence. Then, the existence of positive
definite solutions to GARE is obtained. The GARE plays
an important role in stochastic linear-quadratic control
problems [26]–[28]. Here, both sufficient and necessary
conditions are presented for guaranteeing the existence of
a positive definite solution to the GARE. As a byproduct,
necessary and sufficient conditions are given for the ex-
istence of stochastic feedback stabilization control laws.
That is, it is sufficient that the open-loop dynamics (A,B)
is controllable and the product of the sum of real parts of
unstable open-loop poles and the square of noise inten-
sity is less than 1/2, while it is necessary that (A,B) is
stabilizable and the product of the maximal real part of
the open-loop poles and the square of noise intensity is
less than 1/2.

2) The necessary and sufficient conditions for multiagent
consentability and consensus are revealed. We first de-
rive the mean square and almost sure consentability con-
ditions for leader-free linear multiagent systems. a) It is
proved that if the agent dynamics (A,B) is controllable,
4λu

0
N −1

N σ̄2 < λ2 and the time delay τ1 < τ ∗
1 , then the lin-

ear multiagent system is mean square and almost surely
consentable, where λu

0 denotes the sum of the real parts
of the unstable eigenvalues of A, N is the number of
agents, λ2 is the algebraic connectivity of the graph, σ̄
is the bound of the noise intensities, and τ ∗

1 is a bound
of the time delay in the deterministic term. Especially,
some special cases are given to show that the stabiliz-
ability of (A,B) and the restriction on noise intensity
are necessary for the mean square consentability. b) For
second-order integrator multiagent systems under undi-
rected graphs, we show that it is mean square and almost
surely consentable regardless of noises and time delays.
Some necessary conditions on the mean square consensus
are also obtained for the delay-free case. Then, the con-
sentability and consensus results are extended to leader-
following multiagent systems which include stochastic
stabilization by delayed noisy feedback as the special
case.

The rest of the paper is structured in five parts. Section II
develops the main tools such as stochastic stability and GARE
for examining the consentability of linear multiagent systems.
Section III investigates consentability conditions and pursues
consensus protocols of leader-free linear multiagent systems
under undirected graphs. Section IV extends our investigation
to the leader-following case and stochastic stabilization with
delayed noisy feedback. Section V presents simulation results
to verify the theoretical analysis. Section VI concludes the paper
with some remarks that outline possible directions for future
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research in this field. For clarity of presentation, the proofs of
most technical results are relegated to the appendix.

Notation: The symbol 1N denotes the N -dimensional col-
umn vector with all ones; ηN,i denotes the N -dimensional col-
umn vector with the ith element being 1 and others being zero;
JN = 1

N 1N 1T
N ; IN denotes the N -dimensional identity matrix.

For a given matrix or vector A, its transpose is denoted by AT , its
Euclidean norm is denoted by ‖A‖, and its maximum real part of
the eigenvalues is denoted by max(Re(λ(A))). For a real sym-
metric matrix A, λmax(A) and λmin(A) denote its maximum and
minimum eigenvalues, respectively. For two matrices A and B,
A ⊗ B denotes their Kronecker product. For symmetric matri-
ces X and Y , the notation X ≥ Y (respectively, X > Y ) means
that the matrix X − Y is positive semidefinite (respectively,
positive definite). For a, b ∈ R, a ∨ b represents max{a, b} and
a ∧ b denotes min{a, b}. Let (Ω,F , P ) be a complete proba-
bility space with a filtration {Ft}t≥0 satisfying the usual condi-
tions. For a given random variable or vector X , the mathematical
expectation of X is denoted by EX . For continuous martin-
gales M(t) and N(t), their quadratic variation is denoted by
〈M,N〉(t) (see [29]). We also denote 〈M〉(t) := 〈M,M〉(t).
For the fixed τ > 0, we use C([−τ, 0], Rn ) to denote the space
of all continuous Rn -valued functions ϕ defined on [−τ, 0] with
the norm ‖ϕ‖C = supt∈[−τ ,0] ‖ϕ(t)‖.

II. STOCHASTIC STABILITY AND GARE

When the control of multiagent systems with the delayed
and noisy measurements is studied, the consensus problem of
the closed-loop systems is transformed into the stability prob-
lem of SDDEs. Hence, the stochastic stability theorem (see
Theorem II.1) should be first established. After the stability the-
orem, we need to fix how to design the feedback control based
on the delayed and noisy measurements. The solution will resort
to a GARE (see Theorem II.2). This section is to establish the
two tools.

A. Stochastic Stability of SDDEs

This section aims to establish the mean square and almost
sure exponential stability of the following SDDE:

dy(t) = [A0y(t) + A1y(t − τ1)]dt + dM(t) (1)

where A0 , A1 ∈ Rn×n , M(t) =
∑d

i=1

∫ t

0 fi(y(s − τ2))dwi

(s), τ1 , τ2 ≥ 0, fi : Rn → Rn , d > 0, {wi(t)}d
i=1 are indepen-

dent Brownian motions. The functions {fi(x)}d
i=1 satisfy the

following assumption.
Assumption II.1: fi(0) = 0, i = 1, . . . , d, and there exist

positive constants {�i}d
i=1 such that for any y1 , y2 ∈ Rn ,

‖fi(y1) − fi(y2)‖ ≤ �i‖y1 − y2‖, i = 1, . . . , d.
We also give the initial data y(t) = ϕ(t) for t ∈ [−τ, 0], τ =

τ1 ∨ τ2 , and ϕ ∈ C([−τ, 0], Rn ). Here, we assume that for each
P0 > 0, there exists a DP0 ≥ 0 such that

d∑

i=1

fT
i (y)P0fi(y) ≤ yT DP0 y. (2)

Theorem II.1: Suppose Assumption II.1 and condition (2)
hold. If there exists a matrix P > 0 such that

ĀT P + PĀ + (ĀT P Ā + AT
1 PA1)τ1 + DP < 0 (3)

where Ā = A0 + A1 , then there exist C0 , γ0 > 0 such that

E‖y(t)‖2 ≤ C0e
−γ0 t , lim sup

t→∞
1
t

log ‖y(t)‖ < −γ0

2
, a.s. (4)

That is, the trivial solution to SDDE (1) is mean square and
almost surely exponentially stable.

In applications, the diffusion fi(y(s − τ2))dwi(s) may
have various forms (see Sections III and IV). Note that
〈M,P0M〉(t) =

∑d
i=1

∫ t

0 fT
i (y(s − τ2))P0fi(y(s − τ2))ds.

So we can use the following condition to replace (2):

d〈M,P0M〉(t) ≤ yT (t − τ2)DP0 y(t − τ2)dt (5)

which is a direct consequence of (2) that does not involve the
concrete form of diffusion. In fact, the proof of Theorem II.1
in Appendix is based on (5). Theorem II.1 also leads to the
following corollaries.

Corollary II.1: Suppose Assumption II.1 and condition (2)
hold. If there exists a positive definite matrix P such that
TP := ĀT P + PĀ + DP < 0, then for any τ1 ∈ [0, τ1(P )),
the trivial solution to SDDE (1) is mean square and almost
surely exponentially stable, where τ1(P ) := λm in (−TP )

‖ĀT P Ā+AT
1 P A 1 ‖ .

Corollary II.2: Suppose that Ā is symmetric, τ1 = 0, and
fi(y) = �iy, i = 1, . . . , d. Then, the trivial solution to SDDE
(1) is mean square exponentially stable if and only if 2Ā +∑d

i=1 �2
i In < 0.

Remark II.1: Concerning Theorem II.1, first it can yield
an explicit delay bound (see Corollary II.1). Second, it pro-
vides a delay dominated stability criterion and improves the
LMI stability theorems in [30], which takes the SDDE dy(t) =
−y(t − τ1)dt + y(t)dw(t) for example, and gave delay bound
τ ∗
1 < 0.1339. Our Theorem II.1 yields a better delay bound

τ ∗
1 < 0.5. Third, it shows that the stability of stochastic delay

systems does not necessarily depend on the time-delay in diffu-
sion. In fact, the necessary condition of the mean square stability
is independent of such delay in Corollary II.2.

Remark II.2: Corollary II.1 shows that the mean square sta-
ble linear time-invariant SDEs can tolerate a certain time delay,
which depends on the original system parameters. Especially, for
the scalar SDDE: dy(t) = (a0y(t) + a1y(t − τ1))dt + σy(t −
τ2)dw(t), we have a time delay bound τ ∗

1 = − 2(a0 +a1 )+σ 2

(a0 +a1 )2 +a2
1

for mean square stability if the delay-free SDE dy(t) = (a0 +
a1)y(t)dt + σy(t)dw(t) is mean square stable, which is equiv-
alent to 2(a0 + a1) + σ2 < 0.

Remark II.3: Note that the sufficient conditions for the mean
square and almost sure exponential stability in Theorem II.1
do not involve time delay τ2 in the diffusion term. Corollary
II.2 also shows that the mean square stability is independent
of time delay τ2 when τ1 = 0, which is consistent with the
scalar case in [31]. Theorem II.1 and Corollary II.2 also give
that if Ā is symmetric and fi(y) = �iy, i = 1, . . . , d, then the
trivial solution to SDDE (1) is mean square and almost surely

exponentially stable if τ1 ≤ λm in (−(2Ā+
∑ d

i = 1 �2
i In ))

‖ĀT Ā+AT
1 A 1 ‖ . Compared
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with [32, Th. 2.1], not only does it improve the stability criterion,
but also avoids solving a complex quadratic equation.

B. GARE

In this section, we develop the existence and uniqueness of
the solution P > 0 to the following GARE:

AT P + PA − 2αPB(R + BT PB)−1BT P + Q = 0 (6)

where α > 0, A ∈ Rn×n ,B ∈ Rn×m , R > 0, and Q > 0. We
first derive a necessary condition for the existence and unique-
ness of the solution P > 0.

Lemma II.1: Assume that max(Re(λ(A))) ≥ 0 and (A,B)
is controllable. Then, the GARE (6) has a unique solution P =
P (α) > 0 only if α > max(Re(λ(A))).

To find the sufficient conditions, we first note that the prob-
lem above, related to (6), can be considered as the following
stochastic linear-quadratic control problem in [26] with D =
σB, that is, MinimizeuE

∫∞
0 [xT (t)Qx(t) + σ2uT (t)Ru(t)]dt,

subject to

dx(t) = (Ax(t) + Bu(t))dt + σBu(t)dw(t) (7)

x(0) = x0 ∈ Rn , where σ = (2α)−1/2 and u(t) = Kx(t) with
K to be designed. It is proved in [26, Corollary 4] that if (7)
can be mean square stabilized by u(t) for certain K, then
the GARE (6) has a solution P > 0 and the linear-quadratic
control problem is solved by the optimal control gain matrix
K = 2α(R + BT PB)−1BT P . Therefore, we need to establish
the mean square stabilizability of (7) before examining the pos-
itive definite solution of (6).

Let {λu
i (A)}i denote the unstable eigenvalues of A, that is,

Re(λu
i (A)) ≥ 0. Define λu

0 =
∑

i Re(λu
i (A)).

Lemma II.2: System (7) can be mean square stabilized
by u(t) = Kx(t) for certain K if (A,B) is controllable
and λu

0 σ2 < 1/2, and only if (A,B) is stabilizable and
max(Re(λ(A)))σ2 < 1/2.

Remark II.4: The “if” part of Lemma II.2 is based on the
relationship between the approximate solution and the exact
solution of SDEs in [43], and on the existence of the positive
definite solution to the discrete-time ARE in [33]–[36], where
a similar choice of the parameter α has been examined for
stabilization.

Remark II.5: To see the stabilizability clearly, we here con-
sider the linear scalar system dx(t) = (ax(t) + bu(t))dt +
σbu(t)dw(t), b > 0, with the stabilization control law u(t) =
kx(t). It can be proved that the closed-loop system

dx(t) = (a + bk)x(t)dt + σbkx(t)dw(t) (8)

has the property that E‖x(t)‖2 = E‖x(0)‖2 exp{(2(a + bk) +
(σ2b2k2)t}. Then, the mean square stabilizability requires that
there exists a constant k ∈ R such that 2(a + bk) + σ2b2k2 <
0, which is equivalent to aσ2 < 1/2. Hence, it is easy to see that
1) if a ≤ 0, there must exists a k ∈ R such that the closed-loop
system (8) is mean square stable; 2) If a > 0, aσ2 < 1/2 is
necessary for the mean square stabilizability.

Remark II.6: The works [37], [38] considered the con-
trol problem of the following stochastic system with control

dependent noise:

dx(t) = [Ax(t) + Bu(t)]dt + σB0u(t)dw(t) (9)

where u(t) = Kx(t) is the input control. The authors proved
that the stochastic system (9) can be stabilized for any given
noise intensity σ > 0 if and only if (A,B) is stabilizable and
the columns of input coefficient matrix B0 (Rank(B0) < n)
in the noise term belong to the subspace of A spanned by its
eigenvectors corresponding the eigenvalues with nonpositive
real parts. Here, we need to remark that this robust stabiliz-
ability for any given σ > 0 above do not fall in the case of
unstable A and B = B0 (Hence, Lemma II.2 is consistent with
the results in [37] and [38]). It suffices to show that the sta-
bilizability of (A,B) implies that the columns of B must not
belong to the subspace of A spanned by its eigenvectors. To
see it, we consider the two cases: a) (A,B) is controllable;
b) (A,B) is not controllable, but is stabilizable. For the case
(a), Rank(B,AB, ..., An−1B) = n, which is impossible if the
columns of B belong to the subspace of A spanned by its
eigenvectors. For the case (b), there is an invertible matrix S
such that

SAS−1 =

(
A11 A12

0 A22

)

, SB =

(
B1

0

)

,

where (A11 , B1) is controllable and A22 has eigenvalues with
strictly negative real parts; see [39, Propositions 2.1.6 and 2.2.3].
It is easily seen that if the columns of B belong to the subspace
of A spanned by its eigenvectors, then the columns of B1 belong
to the subspace of A11 spanned by its eigenvectors, which is in
conflict with the controllability of (A11 , B1).

By using Lemmas II.1 and II.2, we can have the following
the existence and uniqueness.

Theorem II.2: Assume that max(Re(λ(A))) ≥ 0 and (A,B)
is controllable. Then, the GARE (6) has a unique solution
P = P (α) > 0 if α > λu

0 , and only if α > max(Re(λ(A))).
In particular, if B is invertible, then GARE (6) has a
unique solution P = P (α) > 0 if and only if α > max
(Re(λ(A))).

Remark II.7: If B is full column rank, then BT PB > 0
for any P > 0. In this case, one can obtain the following
GARE:

AT P + PA − 2αPB(BT PB)−1BT P + Q = 0 (10)

with α > λu
0 . Especially, if the matrix B is invertible, then

(10) has the form of A(α)T P + PA(α) + Q = 0, which ad-
mits a unique positive definite solution P given by P =∫∞

0 eA(α)T tQeA(α)tdt, where A(α) = A − αIn is Hurwitz.
For simplicity, we consider R = Im and Q = In . That is, the

GARE (6) has the form of

AT P + PA − 2αPB(Im + BT PB)−1BT P + In = 0.
(11)

In what follows, we assume that B is not invertible (Rank(B) <
n), unless otherwise specified. For the case with Rank(B) = n,
λu

0 in Theorems III.1, IV.1–IV.4, and Corollaries III.1, IV.1, IV.2
will be replaced by max(Re(λ(A))).
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In the following sections, we apply Theorems II.1 and II.2
to establish multiagent consentability, consensus, and stochastic
stabilization.

III. LEADER-FREE LINEAR MULTIAGENT SYSTEMS

A. Linear Multiagent Systems

We consider a system consisting of N (N ≥ 2) agents where
the agents are indexed by 1, 2, . . . , N , respectively. The dy-
namics of the N agents are described by the continuous-time
systems:

ẋi(t) = Axi(t) + Bui(t), t ∈ R+ (12)

where i = 1, 2, ..., N , xi(t) ∈ Rn , A ∈ Rn×n , B ∈ Rn×m ,
and ui(t) ∈ Rm is the input control of the ith agent,
respectively. Denote x(t) = [xT

1 (t), ..., xT
N (t)]T and u(t) =

[uT
1 (t), ..., uT

N (t)]T . Here, the input control u(t) is to be de-
signed. The information flow structures among different agents
are modeled as a connected undirected graph G = {V, E ,A},
where V = {1, 2, ..., N} is the set of nodes with i represent-
ing the ith agent, E denotes the set of directed edges and A =
[aij ]∈RN ×N is the adjacency matrix of G with element aij = 1
or 0 indicating whether or not there is an information flow from
agent j to agent i directly. Also, Ni denotes the set of the node
i’s neighbors, that is, for j ∈ Ni , aij = 1, and degi =

∑N
j=1 aij

is called the degree of i. The Laplacian matrix of G is defined as
L = D −A, whereD = diag(deg1 , ..., degN ). It is obvious that
L is a symmetric matrix and admits a zero eigenvalue, denoted
by λ1 ; other eigenvalues 0 < λ2 ≤ . . . ≤ λN are positive due to
the connectivity of G.

We consider the distributed protocol in the following form:

ui(t) = K
∑

j∈Ni

zji(t) (13)

where K ∈ Rm×n is the feedback gain matrix to be designed

zji(t) = xj (t − τ1) − xi(t − τ1)

+
d∑

l=1

flji(xj (t − τ2) − xi(t − τ2))ξlj i(t), j ∈ Ni (14)

is the state measurement of the agent i from its neighbor agent j,
τ1 , τ2 are the time delays, ξji(t) = (ξ1j i(t), . . . , ξdji(t))T ∈ Rd

is the measurement noise, flji(·) : Rn �→ Rn is the noise
intensity function. In this paper, xj (t − τ1) − xi(t − τ1) is
called the deterministic term and

∑d
l=1 flji(xj (t − τ2) −

xi(t − τ2))ξlj i(t) is called the stochastic term. We assume that
the noises are independent Gaussian white noises. To be exact,
they satisfy the following assumption.

Assumption III.1: The noise process ξji(t) = (ξ1j i(t), . . . ,
ξdji(t))T ∈ Rd satisfies

∫ t

0 ξji(s)ds = wji(t), t ≥ 0, i = 1, 2,
. . . , N, j ∈ Ni , where {wji(t), i = 1, 2, . . . , N, j ∈ Ni} are in-
dependent d-dimensional Brownian motions defined on the
complete probability space (Ω,F , P ).

Note that the update of state x(t) depends on the past
states x(s), s ∈ [t − τ, t) with τ = τ1 ∨ τ2 . We need to de-
fine the initial function on [−τ, 0]. We assume that x(t) = ϕ(t)

for t ∈ [−τ, 0], and ϕ ∈ C([−τ, 0]; RN n ) is deterministic. Let
f·(·) denotes the family of noise intensity functions {flji(·),
i = 1, 2, ..., N , j ∈ Ni , l = 1, 2, ..., d}. The collection of all
admissible distributed protocols with different control gain
matrices is denoted by

U(τ1 , τ2 , f·(·)) =

⎧
⎨

⎩
u(t)|ui(t) = K

∑

j=Ni

zji(t), t ≥ 0,

K ∈ Rm×n , i = 1, . . . , N.

}

. (15)

Under the measurement noise, the consensus definitions are
diversified due to the different asymptotic behaviors in the prob-
ability sense, where the mean square and the almost sure consen-
sus are two important topics. Here, we give the definitions on the
mean square and the almost sure consentability and consensus.

Definition III.1: We say that the linear systems (12) are mean
square (or almost surely) consentable w.r.t. U(τ1 , τ2 , f·(·)), if
there exists a protocol u ∈ U(τ1 , τ2 , f·(·)) solving the mean
square (or almost sure) consensus, that is, it makes the agents
have the property that for any initial data ϕ ∈ C([−τ, 0]; RN n )
and all distinct i, j ∈ V , limt→∞ E‖xi(t) − xj (t)‖2 = 0 (or
limt→∞ ‖xi(t) − xj (t)‖ = 0, a.s.).

Remark III.1: The delayed measurement (flji(·) ≡ 0) or the
noisy measurement without delay (τ1 = τ2 = 0) was investi-
gated in [7] and [13], respectively. In fact, in the complicated
environment, the information communication is often subject to
time-delays and measurement noises simultaneously. The gen-
eral measurement (14) is to describe this phenomenon and has
been examined in [15] for the first-order multiagent consensus.
It is worth noting that the current results are still new even for
the delay-free case (τ1 = τ2 = 0).

Remark III.2: Multiagent consensus and consentability
based on precise (noise and delay free) relative state measure-
ments were well studied in [7] and [18], [40]. Consensus based
on relative state measurements require less information than that
based on both absolute and relative state measurements, and for
many realistic cases, each agent may not have the ability to
get the absolute state information due to the limited perception
capacity and the lack of global coordinates. Multiagent con-
sentability has not been well studied in the delayed and/or noisy
environment. Here, the admissible protocol (15) can be viewed
as a natural extension from the precise relative state measure-
ments to the delayed noisy version. The skills developed in this
paper can also be used for the case with absolute state feedback.

Applying Theorems II.1 and II.2 produces the follow-
ing theorem, which gives the consentability conditions and
the consensus protocol design for linear systems (12) under
max(Re(λ(A))) ≥ 0.

Theorem III.1: Suppose that Assumption III.1 holds, flji(x)
= σljix, σlji ≥ 0, and max(Re(λ(A))) ≥ 0. Then, linear sys-
tems (12) are mean square and almost surely consentable w.r.t.
U(τ1 , τ2 , f·(·)) if

1) (A,B) is controllable;
2) 4λu

0
N −1

N σ̄2 < λ2 ;
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3) τ1 ∈ [0, τ ∗
1 ),

where τ ∗
1 = 1

2‖A‖2 ‖P ‖ ∧
λ2 −4 N −1

N σ̄ 2 (λu
0 +ε)

6(λu
0 +ε)λN

, P > 0 is the

solution to the GARE (11) with α ∈ (λu
0 , λu

0 + ε), ε ∈
(0,

λ2 −4 N −1
N σ̄ 2 λu

0 )
4 N −1

N σ̄ 2 ), σ̄2 =
∑d

l=1 maxN
i,j=1 σ2

lj i . In particular,

the protocol (13) with K = k(Im + BT PB)−1BT P , k ∈
(k, k̄), solves the mean square and almost sure consensus,
where k = [λ2 −

√
λ2

2 − 2αρ]/ρ, k̄ = [λ2 +
√

λ2
2 − 2αρ]/ρ,

ρ = (2N −1
N σ̄2 + 3λN τ1)λ2 .

Remark III.3: If A = 0, then condition 1) in Theorem III.1
implies that B is invertible. In this case, for any given τ1 , τ2 , and
σlji , i, j = 1, . . . , N, l = 1, . . . , d, the linear multiagent sys-
tems (12) are mean square consentable w.r.t. U(τ1 , τ2 , f·(·)).
In fact, K = −kB−1 with k ∈ (0, 1

λN τ1 + N −1
N σ̄ 2 ) can be used to

achieve the stochastic consensus.
If A is stable (max(Re(λ(A))) < 0), then deterministic con-

sensus of ẋi = Axi follows because each xi(t) tends to zero.
Moreover, we can prove the following theorem, which shows
that small control gain does not affect the consensus of the
original system ẋi = Axi .

Theorem III.2: Suppose that Assumption III.1 holds, flji(x)
= σljix, σlji ≥ 0, and max(Re(λ(A))) < 0. Then, the linear
systems (12) are mean square and almost surely consentable
w.r.t. U(τ1 , τ2 , f·(·)) for any given τ1 , τ2 , σlj i > 0. Especially,
the choice K = kBT P can guarantee the mean square and al-
most sure consensus of the linear system (12), where k ∈ R
satisfies |k|λN ‖PBBT P‖(2 + σ̄2 N −1

N ‖BBT P‖|k|) < 1, P =
∫∞

0 eAT teAtdt.
When τ1 vanishes, we can obtain the following corollary,

which is a direct consequence of Theorem III.1.
Corollary III.1: Suppose that Assumption III.1 holds,

flji(x) = σljix, σlji ≥ 0, τ1 = 0 and max(Re(λ(A))) ≥ 0.
Then, linear systems (12) are mean square and almost surely
consentable w.r.t. U(τ1 , τ2 , f·(·)) if conditions 1) and 2) in
Theorem III.1 hold. Moreover, the protocol (13) with K =
k(Im + BT PB)−1BT P , k ∈ (k, k̄), solves the mean square
and almost sure consensus, where P > 0 is the solution to
GARE (11) with α ∈ (λu

0 ,
λ2

2
2ρ ), k = [λ2 −

√
λ2

2 − 2αρ]/ρ, k̄ =

[λ2 +
√

λ2
2 − 2αρ]/ρ, ρ = 2N −1

N σ̄2λ2 .
Theorem III.1 and Corollary III.1 focus on the suf-

ficient conditions on stochastic consentability. We now
examine the necessary conditions for the mean square
consentability.

Theorem III.3: Suppose that Assumption III.1 holds and
τ1 = 0. Then, linear systems (12) are mean square consentable
w.r.t. U(τ1 , τ2 , f·(·)) only if (A,B) is stabilizable.

The following example gives the necessity of certain restric-
tion on the noise intensities for the mean square consentability
of the two-dimensional dynamics.

Theorem III.4: Consider the multiagent systems (12) with

n = 2, τ1 = τ2 = 0, A =

(
0 1
0 β

)

and B = (0, 1)T . Suppose that Assumption III.1 holds
with d = 2, β > 0 and f1j i(x) = (σjix1 , 0)T , f2j i(x) =

(0, σjix2)T , σji > 0. Then, linear systems (12) are mean square
consentable w.r.t. U(τ1 , τ2 , f·(·)) only if λN > 4β N −1

N σ2 ,
where σ = minN

i,j=1 σji .

B. Second-Order Integrator Multiagent Systems

In view of Theorems III.1 and III.4, we can see that if
max(Re(λ(A))) > 0, the mean square consentability of linear
systems (12) might be destroyed by the large noise intensities. If
max(Re(λ(A))) = 0, then the consentability of linear systems
(12) holds for any given noise intensities if τ1 = 0. However, we
need to solve the GARE (11) in order for finding the consensus
protocol. Moreover, we do not know whether the restriction on
the time delay can be removed if max(Re(λ(A))) = 0. These
motivate us to give further investigation.

In this section, we consider the second-order integrator sys-
tems, that is, xi(t) = [yi(t), vi(t)]T ∈ R2 with the dynamics

ẏi(t) = vi(t), v̇i(t) = ui(t), i = 1, 2, ..., N (16)

which can be considered as the special case of the linear system
(12) with A = (0 1

0 0 ), and B = (0, 1)T . Here, yi(t) and vi(t) can
be considered as the position and the velocity of the ith agent,
respectively. It is easy to see that (A,B) is controllable and
λ(A) = 0. We will show that second-order integrator systems
(16) must be mean square and almost surely consentable w.r.t.
U(τ1 , τ2 , f·(·)) for any given system parameters. Here, we focus
on the choice of the protocol for solving stochastic consensus.

For this case, we consider the different uncertainties in each
position and velocity communication. Then, the protocol (13)
can be rewritten as follows:

ui(t) = k1

∑

j∈Ni

z1j i(t) + k2

∑

j∈Ni

z2j i(t) (17)

where K = [k1 , k2 ] ∈ R1×2 , z1j i(t) = yj (t − τ1) − yi(t − τ1)
+ f1j i(yj (t − τ2) − yi(t − τ2))ξ1j i(t), z2j i(t) = vj (t − τ1) −
vi(t − τ1) + f2j i(vj (t − τ2) − vi(t − τ2))ξ2j i(t) are the
position and the velocity measurements of the agent i from
its neighbor j ∈ Ni , ξji(t) = [ξ1j i , ξ2j i ]T is the 2-D Gaussian
white noise, that is, ξ1j i and ξ2j i are the scalar independent
Gaussian white noise, and f1j i(·) and f2j i(·) satisfy the
following assumption.

Assumption III.2: For each (j, i), f1j i(0) = f2j i(0) = 0
and there exist nonnegative constants σ̄1j i and σ̄2j i

such that ‖f1j i(y1) − f1j i(y2)‖ ≤ σ̄1j i‖y1 − y2‖, ‖f2j i(y1) −
f2j i(y2)‖ ≤ σ̄2j i‖y1 − y2‖ for all y1 , y2 ∈ R.

By using Theorem II.1 and choosing appropriate P in (3), we
can obtain the following consensus conditions.

Theorem III.5: Suppose that Assumptions III.1 and III.2
hold, and d = 2. Then, the protocol (17) solves the mean square
and almost sure consensus of the multiagent system (16) if
k1 > 0, k2 > 0, and

k1

(

2λN τ1 + σ̄2
1
N − 1

N

)

(2 + k1λN τ1) + k1λ2τ1

< 2λ2k2

(

1 − k2 σ̄
2
2
N − 1

N

)

− 4k2
2λ2

N τ1 (18)
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where σ̄1 = maxN
i,j=1 σ̄1j i and σ̄2 = maxN

i,j=1 σ̄2j i

Remark III.4: Theorem III.5 shows that for any time delays
τ1 , τ2 and {σ1j i , σ2j i}N

i,j=1 , we can find the appropriate control
gains k1 , k2 to guarantee the mean square and almost sure con-
sensus. In fact, for any time delays τ1 , τ2 and {σ1j i , σ2j i}N

i,j=1 ,
we first choose k2 such that k2 < λ2

2λ2
N τ1 +λ2 σ̄ 2

2
N −1

N

. Let

k2 be fixed. Then, we have p1 := 2λ2k2(1 − k2 σ̄
2
2

N −1
N ) −

4k2
2λ2

N τ1 > 0. Based on the given k2 , we choose k1 such
that k1p2(k1) < p1 , where p2(k1) = (2λN τ1 + σ̄2

1
N −1

N )(2 +
k1λN τ1) + λ2τ1 . Hence, condition (18) holds and consensus is
achieved.

We next aim to obtain necessary conditions for mean square
consensus of the second-order multiagent systems (16) without
time delay. We consider the following assumption.

Assumption III.3: For each (j, i), f1j i(0) = f2j i(0) = 0
and there exist some constants σ̄1j i , σ̄2j i , σ1j i , σ2j i > 0
such that σ̄1j i‖y1 − y2‖ ≥ ‖f1j i(y1) − f1j i(y2)‖ ≥ σ1j i‖y1
− y2‖, σ̄2j i‖y1 − y2‖ ≥ ‖f2j i(y1) − f2j i(y2)‖ ≥ σ2j i‖y1 −
y2‖ for all y1 , y2 ∈ R,

By Theorem III.5 and stochastic stability theorem of stochas-
tic ordinary differential equations, we can prove the following
necessary conditions and sufficient conditions.

Theorem III.6: Suppose that Assumptions III.1 and III.3
hold, d = 2, and τ1 = τ2 = 0. Then, the protocol (17) solves
the mean square consensus if

k1 > 0, k1 σ̄
2
1
N − 1

N
< k2λ2 − k2

2 σ̄2
2
N − 1

N
λ2 (19)

and only if

0 < k1σ
2
1
N − 1

N
< k2λN − k2

2σ2
2
N − 1

N
λN (20)

where σ1 = minN
i,j=1 σ1j i and σ2 = minN

i,j=1 σ2j i .
Remark III.5: The approach used in obtaining

Theorems III.5 and III.6 can be applied to examine the
stability of the second-order stochastic differential equation

⎧
⎪⎨

⎪⎩

dy(t) = v(t)dt

dv(t) = −μ1y(t)dt − μ2v(t)dt

+σ1y(t)dw1(t) + σ2v(t)dw2(t)
(21)

where μ1 , μ2 ∈ R, σ1 , σ2 > 0 are fixed constants, w1(t) and
w2(t) are two scalar Brownian motions. We also obtain that the
second-order SDE (21) is mean square exponentially stable if
and only if μ1 , μ2 > 0 and σ2

1 < (2μ2 − σ2
2 )μ1 , and the second-

order SDE (21) is almost surely exponentially stable if μ1 , μ2 >
0 and σ2

1 < (2μ2 − σ2
2 )μ1 . This is a new finding for the scalar

second-order SDEs.
The stochastic stability and the GARE developed in Section II

help us to find the mean square and almost sure consentability
conditions and consensus protocols for the linear multiagent
systems under the undirected graph. These sufficient conditions
are explicit and easy to be verified. Note that for the case of
general digraph, even for the balanced graph, it is a difficult
task to obtain the explicit consentability conditions for the lin-
ear systems with multiplicative noises. However, for the linear
leader-following multiagent systems, our skills can be used to

solve the stochastic leader-following consentability and con-
sensus problems, where we only need the subgraphs formed by
the followers to be undirected. This is the following section’s
intention.

IV. LEADER-FOLLOWING MULTIAGENT SYSTEMS

A. Leader-Following Linear Multiagent Systems

In this section, we consider a leader-following multiagent
system consisting of N + 1 agents where an agent indexed by
0 acts as the leader and the other agents indexed by 1, 2, . . . , N ,
respectively, act as the followers. Generally, the behavior of the
leader is independent of the followers. Here, x0 denotes the state
of the leader and is assumed to have linear dynamic as

ẋ0 = Ax0 . (22)

For the ith follower, the dynamics is described as (12)
with ui(t) defined by (13). Note that this is different from
Section III-A since for each agent i, its neighbors Ni may con-
tain the leader 0. Considering the information flow from the
leader to the followers, we denote the topology by G̃ = {Ṽ, Ã}
with Ṽ = {0, 1, 2, . . . , N} and

Ã =

(
0 0N ×N

a0 A

)

∈ R(N +1)×(N +1) ,

where A = [aij ] ∈ RN ×N , a0 = [a10 , . . . , aN 0 ]T , ai0 = 1 if
0 ∈ Ni , otherwise ai0 = 0. Let D0 = diag(a10 , . . . , aN 0). We
use G = (V,A) to represent the subgraph formed by the N

followers, where V = Ṽ \ {0}.
Assumption IV.1: Assume that the graph G̃ contains a span-

ning tree and G is an undirected graph.
Under Assumption IV.1, L0 = L + D0 is symmetric, and all

the eigenvalues of L0 are positive ([40]), denoted by {λ0i}N
i=1 .

Hence, there exists a unitary matrix Φ such that ΦT L0Φ =
diag(λ01 , . . . , λ0N ) =: Λ0 . Without loss of generality, we as-
sume 0 < λ01 ≤ . . . ≤ λ0N . In what follows, the main results
are stated as theorems. Because the proofs are similar to that of
Section III, the verbatim proofs of the theorems are omitted due
to page limitation.

Theorem IV.1: Suppose that Assumptions III.1 and IV.1
hold, flji(x) = σljix, σlji ≥ 0, and max(Re(λ(A))) ≥ 0.
Then, linear systems (12) and (22) are mean square and almost
surely consentable w.r.t. U(τ1 , τ2 , f·(·)) if condition 1) and

2′) 4λu
0 σ̄2 < λ01 ,

3′) τ1 ∈ [0, τ ∗
1 ) with τ ∗

1 = 1
2‖A‖2 ‖P ‖ ∧ λ0 1 −4σ̄ 2 (λu

0 +ε)
6(λu

0 +ε)λ0 N
,

where P > 0 is the solution to the GARE (11)
with α ∈ (λu

0 , λu
0 + ε), ε ∈ (0,

λ0 1 −4σ̄ 2 λu
0

4σ̄ 2 ), σ̄2 =
∑d

l=1
maxN

i=1,j=0 σ2
lj i . Especially, the protocol (13) with

K = k(Im + BT PB)−1BT P , k ∈ (k, k̄), solves the
mean square and almost sure consensus, where
k = [λ01 −

√
λ2

01 − 2αρ]/ρ, k̄ = [λ01 +
√

λ2
01 − 2αρ]/ρ,

ρ = (2σ̄2 + 3λ0N τ1)λ01 .
Especially, if the overall network G̃ forms a star topology,

then we have the following result.
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Theorem IV.2: Suppose that Assumption III.1 holds, G̃
forms a star topology, flji(x) = σljix, σlji ≥ 0, and
max(Re(λ(A))) ≥ 0. Then, linear systems (12) and (22) are
mean square and almost surely consentable w.r.t.U(τ1 , τ2 , f·(·))
if condition 1) holds and

2′′) λu
0 σ̄2 < 1/2,

3′′) τ1 ∈ [0, τ ∗
1 ) with τ ∗

1 = 1
2‖A‖2 ‖P ‖ ∧ 1−2σ̄ 2 (λu

0 +ε)
6(λu

0 +ε) ,
where P > 0 is the solution to the GARE (11) with α ∈

(λu
0 , λu

0 + ε), ε ∈ (0,
1−2σ̄ 2 λu

0
2σ̄ 2 ), σ̄2 =

∑d
l=1 maxN

i=1 σ2
l0i . Espe-

cially, the protocol (13) with K = k(Im + BT PB)−1BT P ,
k ∈ (k, k̄), solves the mean square and almost sure con-
sensus, where k = [1 −√

1 − 2αρ]/ρ, k̄ = [1 +
√

1 − 2αρ]/ρ,
ρ = (σ̄2 + 3τ1).

If we consider the special case: x0(t) ≡ 0 and N = 1
(one follower). Then, the stochastic consentability problem in
Theorem IV.2 is actually the stochastic stabilization problem of
(12), which is concluded as the following corollary and improves
the case with single and linear diffusion in [46].

Corollary IV.1: Suppose that Assumption III.1 holds,
x0(t) ≡ 0, N = 1, fl01(x) = σl01x, σl01 ≥ 0, and
max(Re(λ(A))) ≥ 0. Then, linear systems (12) is mean
square and almost surely stabilizable if conditions 1), 2”),
3”) hold with P > 0 being the solution to the GARE (11)

with α ∈ (λu
0 , λu

0 + ε), ε ∈ (0,
1−2σ̄ 2 λu

0
2σ̄ 2 ), σ̄2 =

∑d
l=1 σ2

l01 .
Especially, the choice K defined in Theorem IV.2 stabilizes the
linear system (12).

B. Leader-Following Second-Order Integrator
Multiagent Systems

Consider the ith follower’s state xi(t) = [yi(t), vi(t)]T ∈
R2 with the dynamics (16), and the leader’s state x0(t) =
[y0(t), v0(t)]T ∈ R2 with the dynamic

ẏ0(t) = v0(t) = v0 (23)

where v0 is a constant velocity known to all followers. The
protocol is designed as (17), which includes the leader’s infor-
mation. Similarly to the linear case above, we have the following
theorems and corollary.

Theorem IV.3: Suppose that Assumptions III.1, III.2, and
IV.1 hold, and d = 2. Then, the protocol (17) solves the mean
square and almost sure consensus of (16) and (23) if k1 >
0, k2 > 0, and k1(2λ0N τ1 + σ̄2

1 )(2 + k1λ0N τ1) + k1λ01τ1 <
2λ01k2(1 − k2 σ̄

2
2 ) + 4k2

2λ2
0N τ1 , where σ̄1 = max{σ̄1j i , i =

1, . . . , N, j ∈ Ni} and max{σ̄2j i , i = 1, . . . , N, j ∈ Ni}.
Theorem IV.4: Suppose that Assumptions III.1 and III.2

hold, G̃ forms a star topology, and d = 2. Then, the protocol
(17) solves the mean square and almost sure consensus of (16)
and (23) if k1 > 0, k2 > 0, and k1(2τ1 + 0.5σ̄2

1 )(2 + k1τ1) +
k1τ1 < 2k2(1 − 0.5k2 σ̄

2
2 ) + 4k2

2τ1 , where σ̄1 = maxN
i=1 σ̄10i

and σ̄2 = maxN
i=1 σ̄20i .

Corollary IV.2: Suppose that Assumptions III.1 and III.2
hold, x0(t) ≡ 0, N = 1, and d = 2. Then, the second-order
system (16) can be mean square and almost surely stabi-
lized by (17) with the same choice of k1 and k2 as that in
Theorem IV.4.

Fig. 1. Relative state errors of the four agents: k1 = 0.01, k2 = 0.065.

V. SIMULATIONS

We consider the almost sure and mean square consensus for
a second-order integrator multiagent system (16) composed of
four scalar agents. The control input ui(t) has the form of (17).
We will choose the appropriate control gains k1 and k2 to guar-
antee the mean square and almost sure consensus.

Consider G = {V, E ,A}, where V = {1, 2, 3, 4}, E =
{(1, 2), (2, 3), (3, 4), (4, 3), (3, 2), (2, 1)} and A = [aij ]4×4
with a12 = a21 = a23 = a32 = a34 = a43 = 1 and other be-
ing zero. It can be obtained the eigenvalues of the Laplacian
matrix L: λ1 = 0, λ2 = 0.5858, λ3 = 2, λ4 = 3.4142. The ini-
tial states are given by y(s) = [2,−4,−2,−5]T and v(s) =
[7, 2,−4,−8]T , s ∈ [−(τ1 ∨ τ2), 0], where τ1 = 0.2 and τ2 =
0.5. Assume that the noise intensity functions f1j i(x) =
σ̄1j ix = 0.5x and f2j i(x) = σ̄2j ix = 0.3x, i, j = 1, 2, 3, 4.

We now use Remark III.4 to choose the control
gains k1 , k2 such that the four agents achieve the mean
square and almost sure consensus. We compute that k∗

2 =
λ2

2λ2
N τ1 +λ2 σ̄ 2

2
N −1

N

= 0.1246. Therefore, we choose k2 = 0.065 <

k∗
2 . Then, we have p1 := 2λ2k2(1 − k2 σ̄

2
2

N −1
N ) − 4k2

2λ2
N τ1 =

0.0365. Based on the given k2 , we choose k1 = 0.01,
and then 0.0323 = k1p2(k1) < p1 = 0.0365, where p2(k1) =
(2λN τ1 + σ̄2

1
N −1

N )(2 + k1λN τ1) + λ2τ1 . Hence, the four
agents achieve the mean square and almost sure consensus (see
Theorem III.5).

In order to simulate the mean square and almost sure consen-
sus, we consider the behaviors of the relative states {|yi(t) −
y1(t)|}i=2,3,4 . Generally, the almost sure asymptotic behavior
is reflected by one sample path. Here, by choosing one sample
path, we obtain that the relative states {|yi(t) − y1(t)|}i=2,3,4
tend to zero, which is revealed in Fig. 1. That is, four agents
achieve the almost sure consensus. By considering each agent’s
behavior and the sample path, we have Fig. 2, which shows that
the agents’ velocities achieve the almost sure strong consensus,
that is, the agents’ velocities tend to a common value. For the
mean square consensus, we generate 104 sample paths. Then,
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Fig. 2. States of the four agents: k1 = 0.01, k2 = 0.065.

Fig. 3. Mean square errors of the relative states: k1 = 0.01,
k2 = 0.065.

taking the mean square average, we obtain Fig. 3, which shows
that the four agents achieve the mean square consensus.

VI. CONCLUDING REMARKS

In this paper, we developed consentability for linear multi-
agent systems with multiplicative noises and time delays. By
establishing stochastic stability theorem of SDDEs and the pos-
itive definite solution of GARE, we obtained the stochastic
consentability conditions and consensus protocols for the lin-
ear multiagent systems. Our results reveal that the stochastic
consentability depends on the essential properties of the origi-
nal systems, including (A,B), the graph, the noise intensities,
and the time delay in the deterministic term. In particular, the
second-order integrator system must be mean square and almost
surely consentable regardless of the values of time delays and
noise intensities.

There are still many interesting topics deserving further in-
vestigation. We have not obtained the optimal time delay bound

since it is difficult work to find the necessary and sufficient
condition for the stability of SDDEs. It can be observed that
the consensus analysis with measurement noises and time de-
lays under the general directed graphs is more difficult than the
case under undirected graphs, especially for the linear (includ-
ing second-order) multiagent systems. Moreover, the consensus
analysis of multiagent systems with nonlinear dynamics, switch-
ing topology, time-varying delays, and measurement noises has
not be given. Effort can also be directed to extend our analysis
to the heterogeneous multiagent systems with time delays and
measurement noises.

APPENDIX A
PROOF OF THEOREMS IN SECTION II-A

Lemma A.1: ([41]) For any positive definite matrix P and
positive constant τ , the following inequality holds:
(∫ t

t−τ

x(s)ds

)T

P

(∫ t

t−τ

x(s)ds

)

≤ τ

∫ t

t−τ

xT (s)Px(s)ds

provided that the integrals above are well defined.
Proof of Theorem II.1: Let z(t) = y(t) + A1

∫ t

t−τ1
y(s)ds.

We choose the degenerate Lyapunov functional (see [25])
V (yt) = V1(t) + V2(t), where yt = {y(t + θ) : θ ∈
[−τ1 , 0]}, V1(t) = zT (t)Pz(t), V2(t) =

∫ 0
−τ1

∫ t

t+s yT (θ)
AT

1 PA1y(θ)dθds. Note that the elementary inequality:
2xT Oy ≤ xT Ox + yT Oy, for any positive definite matrix
O ∈ Rn×n and x, y ∈ Rn . Using Itô’s formula and Lemma
A.1, we have

dV1(t) = yT (t)[ĀT P + PĀ]y(t)dt + d〈M,PM〉(t)

+ 2yT (t)ĀT PA1

∫ t

t−τ1

y(s)dsdt + dM1(t)

≤ yT (t)S1y(t)dt +
∫ t

t−τ1

yT (s)AT
1 PA1y(s)dsdt

+ d〈M,PM〉(t) + dM1(t) (24)

where S1 = ĀT P + PĀ + τ1Ā
T P Ā, 〈M,PM〉(t) =

∑d
i=1∫ t

0 fT
i (y(s − τ2))Pfi(y(s − τ2))ds,M1(t)=2

∫ t

0 zT (s)P dM
(s). Then, we get from (24) and condition (2) that dV (yt) ≤
yT (t)S2y(t)dt + F (t − τ2)dt + dM1(t), where S2 = ĀT P +
PĀ + (ĀT P Ā + AT

1 PA1)τ1 , F (t) = yT (t)DP y(t). Applying
the Itô formula to eγ tV (yt), for any γ > 0, we have

d[eγ tV (yt)] = γeγtV (yt)dt + eγ tdV (yt)

≤ γeγtV (yt)dt + eγ tyT (t)S2y(t)dt

+ eγ tF (t − τ2)dt + eγ tdM1(t).

Integrating both parts of the above inequality and taking the
expectations yield

eγ tEV (yt) ≤ EV (y0) + E

∫ t

0
eγsyT (s)S2y(s)ds

+
∫ t

0
γeγsEV (ys)ds + E

∫ t

0
eγsF (s − τ2)ds. (25)
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Note that
∫ t

0 eγsF (s − τ2)ds ≤ eγτ2
∫ 0
−τ2

F (s)ds + eγτ2
∫ t

0
eγsF (s)ds. Then, we get

eγ tEV (yt) ≤ C1(γ) +
∫ t

0
eγsEyT (s)S3y(s)ds

+
∫ t

0
γeγsEV (ys)ds (26)

where C1(γ) = V (y0) + eγτ2
∫ 0
−τ2

F (s)ds, S3(γ) = S2 +
eγτ2 DP . By the definition of the functional V (yt) and the el-
ementary inequality (x + y)T Q(x + y) ≤ 2xT Qx + 2yT Qy,
x, y ∈ Rn , Q > 0, we have V (ys) ≤ C2

∫ s

s−τ1
‖y(u)‖2du +

2‖P‖‖y(s)‖2 , where C2 = 3τ1‖A1‖2‖P‖. Substituting this
into (26) yields

eγ tEV (yt) ≤ C1(γ) +
∫ t

0
eγsEyT (s)S3(γ)y(s)ds

+ C2

∫ t

0
γeγs

∫ s

s−τ1

E‖y(u)‖2duds

+ 2‖P‖
∫ t

0
γeγsE‖y(s)‖2ds. (27)

Note that
∫ t

0
eγs

∫ s

s−τ1

E‖y(u)‖2duds

≤
∫ 0

−τ1

E‖y(u)‖2
∫ u+τ1

u

eγsdsdu

+
∫ t

0
E‖y(u)‖2

∫ u+τ1

u

eγsdsdu

≤ τ 2
1 eγτ1 ‖ϕ‖2

C + τ1e
γτ1

∫ t

0
eγuE‖y(u)‖2du.

Hence, we get eγ tEV (yt) ≤ C3(γ) +
∫ t

0 eγsEyT (s)S3(γ)
y(s)ds + C4(γ)γ

∫ t

0 eγsE‖y(s)‖2ds, where C3(γ) = C1(γ) +
C4(γ)γτ 2

1 eγτ1 ‖ϕ‖2
C and C4(γ) = C2τ1e

γτ1 + 2‖P‖. Let
S4(γ) = S3(γ) + γC4(γ)In . Then, it is obtained that

eγ tEV (yt) ≤ C3(γ) +
∫ t

0
eγsEyT (s)S4(γ)y(s)ds. (28)

Note that S4(0) < 0 under (3). Therefore, if (3) holds,
then there must exists a γ∗ > 0 such that for any
γ < γ∗, S4(γ) = ĀT P + PĀ + (ĀT P Ā + AT

1 PA1)τ1 +
eγτ2 DP + γC4(γ)In < 0, which together with (28) implies∫∞

0 eγsEyT (s)(−S4(γ))y(s)ds < C3(γ). This also produces
E‖y(t)‖2 ≤ C0e

−γ0 t . Under Assumption II.1, the mean square
exponential stability implies the almost sure exponential
stability (see [42]). That is, (4) holds. �

Proof of Corollary II.2: Let � =
√∑d

j=1 �2
j . Note that Ā

is symmetric, then there exists a unitary matrix Φ such
that ΦT = Φ−1 and ΦT ĀΦ = diag(λ1 , λ3 , · · · , λn ) =: Λ with
λmin(Ā) = λ1 ≤ · · · ≤ λn = λmax(Ā). In view of the trans-
formation, TA := 2Ā + �2In < 0 if and only if 2λi + �2 < 0,
i = 1, . . . , d. Letting x(t) = Φ−1y(t), then we get dxi(t) =
λixi(t)dt +

∑d
j=1 �jxi(t − τ2)dwj (t),i = 1, . . . , n. Note that

w(t) =
∑d

j=1 �jdwj (t)/� is still a scalar Brownian motion.
Then, we can rewrite the equation above as

dxi(t) = λixi(t)dt + �xi(t − τ2)dw(t), i = 1, . . . , n. (29)

Hence, the trivial solution to SDDE (1) is mean square stable
if and only if (29) is mean square stable, which is equivalent to
that 2λi + �2 < 0 (see [31]). �

APPENDIX B
PROOF OF THEOREMS IN SECTION II-B

Proof of Lemma II.1: Let A(α) := A − αIn . If AT P +
PA − 2αPB(R + BT PB)−1BT P + Q = 0 has posi-
tive definite solution P > 0, then A(α)T P + PA(α) =
−2α(P−1 + BR−1BT )−1 − Q < 0, where 2α[P − PB(R +
BT PB)−1BT P ] = 2α(P−1 + BR−1BT )−1 is used. Hence,
A(α) is Hurwitz, which implies α > max(Re(λ(A))). �

Proof of Lemma II.2: We first prove that the corresponding
discrete-time system is mean square stabilizable with a expo-
nential convergence rate under the given conditions, then we
get the sufficiency by applying the fact [43] that the mean
square exponential stability of the discrete-time models yields
the mean square exponential stability of the continuous-time
models. Consider the following discrete-time linear system:

xi+1 = xi + AxiΔ + BKxiΔ + σBKxiΔwi, (30)

which can be considered as the Euler–Maruyama approximation
to (7), where Δ > 0 is time-stepsize and Δwk is the Brownian
increment. Let AΔ = I + AΔ, BΔ = BΔ. Note that (A,B) is
controllable, then there is a Δ∗

1 > 0 such that for any Δ < Δ∗
1 ,

(AΔ , B) is controllable. It can be proved that

lim
Δ→0

[

1 − 1
Πi |λ̄u

i (AΔ)|2
]

/(2Δ) =
∑

i

Re(λu
i (A)) = λu

0

where {λ̄u
i (A)}i denotes A’s eigenvalue(s) larger than one in

absolute value. Therefore, if 2σ2λu
0 < 1, then there exist a Δ∗ <

Δ∗
1 such that for any Δ ∈ (0,Δ∗), 1

σ 2 Δ > [1 − 1
Π i |λ̄u

i (AΔ )|2 ].
Hence, for any Δ ∈ (0,Δ∗), the following ARE has a unique
positive definite solution P (see [36]):

AT
ΔPAΔ− 1

σ2 ΔAT
ΔPB(R + BT PB)−1BT PAΔ +QΔ = P

(31)
for R > 0 and Q > 0. That is, the choice K = σ−2(R +
BT PB)−1BT PAΔ guarantees the mean square stability of
(30). Note the mean square asymptotical stability and the mean
square exponential stability are equivalent for the linear time-
invariant SDE. By the mean square exponential stability of the
numerical and exact solutions (see [43]), we can see that the
linear system (7) is mean square stabilizable.

Now we show that necessity of conditions that (A,B) is
stabilizable and 2max(Re(λ(A)))σ2 < 1 for the mean square
stabilization. If (A,B) is unstabilizable, then for any K,
A − BK is not Hurwitz. Let AK := A − BK. By the matrix
theorem, there exists a complex invertible matrix Q such that
QAK Q−1 = J , Here, J is the Jordan normal form of AK , i.e.,
J = diag(Jμ1 ,n1 , Jμ2 ,n2 , . . . , Jμl ,n l

),
∑l

k=1 nk = n, where
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μ1 , μ2 , . . . , μl are all the eigenvalues of AK and Jμk ,nk
is

the corresponding Jordan block of size nk with eigenvalue
μk . Let Y (t) = Qx(t) and M(t) = σQ

∫ t

0 BKx(s)dw(s).
Then, we have from (7) that dY (t) = JY (t)dt + dM(t).
Note that AK is not Hurwitz, then there must exist an
eigenvalue, denoted by μk , with the nonnegative real part
(Re(μk ) ≥ 0). Considering the kth Jordan block and its
corresponding component ζk (t) = [ζk,1(t), . . . , ζk,nk

(t)]T and
M(k, t) = [Mk,1(t), . . . ,Mk,nk

(t)]T , where ζk,j (t) = Ykj
(t)

and Mk,j (t) = Mkj
(t) with kj =

∑k−1
i=1 ni + j, we have dζk,nk

(t) = μkζk,nk
(t)dt + dMk,nk

(t), which together with the vari-
ation of constants formula implies ζk,nk

(t) = eμk tζk,nk
(0) +

∫ t

0 eμk (t−s)dMk,nk
(s). Hence, we get E‖ζk,nk

(t)‖2 =
eRe(μk )t‖ζk,nk

(0)‖2 + E‖ ∫ t

0 eμk (t−s)dMk,nk
(s)‖2 ≥ eRe(μk )t

‖ζk,nk
(0)‖2 . This is in contradiction with the mean square

stability. Hence, (A,B) must be stabilizable.
By [38, Th. 1], if the linear system (7) is mean square

stabilizable, then there exists a positive definite solution to
(6) with 2α = σ−2 . This together with Lemma II.1 implies
2max(Re(λ(A)))σ2 < 1. �

Proof of Theorem II.2: The “only if” part has been proved
in Lemma II.1. Hence, we need only prove the “if” part in the
two assertions, respectively.

By Lemma II.2, we know that the system (7) is mean square
stabilizable. This together with Corollary 4 in [26] can yield the
first “if” part by letting σ = (2α)−1/2 .

If B is invertible and α > max(Re(λ(A))), we do not
know whether the linear system is mean square stabiliz-
able. Therefore, [26, Corollary 4] cannot be used to prove
the second “if” part. Here, we will develop a matrix ap-
proximate sequence to get the desired assertion. Let ΓP :=
AT P + PA − 2αPB(R + BT PB)−1BT P + Q. It is easy to
see that R + BT PB > 0 for P ≥ 0 since R > 0. Note that
A(α) = A − αIn is Hurwitz. Then, there exists a P0 > 0 such
that A(α)T P0 + P0A(α) + Q = 0. We have

ΓP0 = A(α)T P0 + P0A(α) + M(P0) + Q > 0 (32)

where M(P ) = 2α[P − PB(R + BT PB)−1BT P ] = 2α
(P−1 + BR−1BT )−1 . Let P0 be fixed, then there exists a P1 >
0 satisfying A(α)T P1 + P1A(α) + Q + M(P0) = 0. We can
see that A(α)T (P1 − P0) + (P1 − P0)A(α) = −M(P0) < 0,
which implies P1 > P0 . Then, M(P1) > M(P0) and ΓP1 >
0. Assume that we have obtained Pk > Pk−1 > · · · > P0 , i =
0, 1, . . . , k, we now define Pk+1 as follows:

A(α)T Pk+1 + Pk+1A(α) + Q + M(Pk ) = 0. (33)

Note that M(Pk ) > M(Pk−1), then we have A(α)T (Pk+1−
Pk )+(Pk+1−Pk )A(α)=−[M(Pk ) − M(Pk−1)] < 0, which
implies Pk+1 > Pk . Repeating the same procedure iteratively,
we can find an increasing sequence {Pi}∞i=0 . It can be seen that
M(Pk ) ≤ 2α(BR−1BT )−1 and then

Pk+1 =
∫ ∞

0
eA(α)T t [Q + M(Pk )]eA(α)tdt

≤
∫ ∞

0
eA(α)T t [Q + 2α(BR−1BT )−1 ]eA(α)tdt < ∞.

Therefore, the exists a P ∗ > P0 > 0 such that P ∗ = limi→∞ Pi .
Taking the limit in (33) yields the existence of the positive
definite solution. This together with [44, Th. 4.2] gives that the
positive definite solution to GARE (6) is unique. �

APPENDIX C
PROOF OF THEOREMS IN SECTION III

For the linear multiagent systems, we denote δ(t) =
[(IN − JN ) ⊗ In ]x(t). Let δ(t) = [δT

1 (t), ..., δT
N (t)]T , where

δi(t) ∈ Rn , i = 1, ..., N . Define the unitary matrix TL =
[ 1N√

N
, φ2 , ..., φN ], where φi is the unit eigenvector of L asso-

ciated with the eigenvalue λi , that is, φT
i L = λiφ

T
i , ‖φi‖ =

1, i = 2, ..., N . Denote φ = [φ2 , ..., φN ]. Let δ(t) = (TL ⊗
In )δ̃(t) and δ̃(t) = [δ̃T

1 (t), ..., δ̃T
N (t)]T , then it can be veri-

fied that δ̃1(t) ≡ 0. Denote δ(t) = [δ̃T
2 (t), ..., δ̃T

N (t)]T and Λ =
diag(λ2 , λ3 , · · · , λN ).

Proof of Theorem III.1: It suffices to show that the protocol
(13) with K = k(Im + BT PB)−1BT P solves the mean square
and almost sure consensus. The consensus problems will be
first transformed into the stability problems of a SDDE, then
Theorems II.1 and II.2 will be applied to solve the stability
problems, which also solve the consensus problems.

Note that conditions 2) and 3) and the definition of
ε imply that λ2

2 > 2(λu
0 + ε)ρ, which guarantees that k

and k̄ are well defined for α ∈ (λu
0 , λu

0 + ε). With the
protocol (13), the closed-loop system takes the form
dx(t) = (IN ⊗ A)x(t)dt − (L ⊗ BK)x(t − τ1)dt + dM̃1(t),
where M̃1(t) =

∑d
l=1
∑N

i,j=1 aijσlj i

∫ t

0 [Si,j ⊗ BK]δ(s − τ2)
dwlji(s), Si,j = [skl ]N ×N is an N × N matrix with
sii = −aij , sij = aij and all other elements being zero, i, j =
1, 2, . . . , N . By the definition of δ(t), we have dδ(t) = (IN ⊗
A)δ(t)dt − (L ⊗ BK)δ(t − τ1)dt + dM̃2(t), where M̃2

(t) =
∑d

l=1
∑N

i,j=1 aijσlj i

∫ t

0 [(IN − JN )Si,j ⊗ BK] δ(s −
τ2)dwlji(s). This together with the definition of δ(t) implies

dδ(t) = A0δ(t)dt + A1δ(t − τ1)dt + dM̃3(t) (34)

where A0 = IN −1 ⊗ A, A1 = −Λ ⊗ BK, M̃3(t) =
∑d

l=1∑N
i,j=1 aijσlj i

∫ t

0 [(φT (IN − JN )Si,jφ) ⊗ BK] δ(s − τ2)
dw1j i(s). This together with the definition of δ(t) yields that
the consensus problems equal to the stability of (34).

Hence, we need to prove the stability of (34) un-
der conditions 1)-3). Let P̄ = IN −1 ⊗ P . Note that

〈M̃3 , P̄ M̃3〉(t) =
∑d

l=1
∑N

i,j=1 aijσ
2
lj i

∫ t

0 δ
T
(s − τ2)[((φT

(IN − JN )Si,jφ)T (φT (IN − JN )Si,jφ)) ⊗ KT BT PBK]
δ(s − τ2)ds, φT (IN − JN )Si,jφ = φT Si,jφ and that

∑N
i,j=1

aij (φT Si,jφ)T (φSi,jφ) = 2(N −1)
N Λ. Then, we have

d〈M̃3 , P̄ M̃3〉(t) ≤ σ̄2δ
T
(t − τ2)Dδ(t − τ2)dt (35)

where D = 2N −1
N Λ ⊗ (KT BT PBK). We now show that con-

ditions 2) and 3) under K = k(Im + BT PB)−1BT P im-
ply ĀT P̄ + P̄ Ā + (ĀT P̄ Ā + AT

1 P̄A1)τ1 + σ̄2D < 0, where
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Ā = A0 + A1 . Note that this can be guaranteed by

WT
I P + PWi + WT

i PWiτ1

+
(

λ2
i τ1 + 2λi

N − 1
N

σ̄2
)

KT (BT PB)K < 0 (36)

Wi = A − λiBK, i = 2, . . . , N . By the elementary inequal-
ity (x + y)T Q(x + y) ≤ 2xT Qx + 2yT Qy, x, y ∈ Rn , Q >
0, then WT

i PWi ≤ 2AT PA + 2λ2
i K

T BT PBK. Substituting
this above into (36) and letting K = k(Im + BT PB)−1BT P ,
we can observe that (36) is assured by

Γi := AT P + PA + 2τ1A
T PA

− ζiPB(Im + BT PB)−1BT P < 0, i = 2, . . . , N (37)

where ζi = 2kλi − (2N −1
N σ̄2 + 3λN τ1)λik

2 . Note that P > 0
is the solution to GARE (11). By condition 3), we can easily get
from (37) that

Γi < (2α − ζi)PB(Im + BT PB)−1BT P, (38)

Note that for k ∈ (k, k̄), 2α − ζi < 0. Then, we get from (38)
that Γi < 0. Hence, by Theorem II.1, there exist C0 > 0 and γ >
0, E‖δ(t)‖2 ≤ C0e

−γ t , lim supt→∞
1
t log ‖δ(t)‖ ≤ − γ

2 , a.s.,
which together with the definition of δ(t) implies the mean
square and almost sure consensus. �

Proof of Theorem III.2: Note that max(Re(λ(A))) < 0.
Then, there exists P > 0 such that AT P + PA = −In . In fact,
P =

∫∞
0 eAT teAtdt. Letting K = kBT P in (34) and applying

Itô’s formula to V (t) = δ
T
(t)(IN −1 ⊗ P )δ(t) yield

dV (t) = (2kδ
T
(t)(Λ ⊗ PBBT P )δ(t − τ1) − ‖δ(t)‖2)dt

+ d〈M̃3 , (IN −1 ⊗ P )M̃3〉(t) + dm(t)

≤ (|k|bp − 1)‖δ(t)‖2dt + |k|bp‖δ(t − τ1)‖2dt

+ σ(b, p)k2‖δ(t − τ2)‖2dt + dm(t)

where m(t) = 2
∫ t

0 δ
T
(s)(IN −1 ⊗ P )dM̃3(s), bp = λN

‖PBBT P‖, σ(b, p) = σ̄2 N −1
N bp‖BBT P‖. Hence, for any

γ > 0, we have d(eγ tV (t)) ≤ (|k|bp − 1)eγ t ‖δ(t)‖2dt
+eγ tdm(t) + |k|bpe

γ t‖δ(t − τ1)‖2dt + γeγtV (t)dt + σ(b, p)
k2eγ t‖δ(t − τ2)‖2dt. Taking expectations, we obtain

eγ tEV (t) ≤ V (0) + (|k|bp − 1)
∫ t

0
eγsE‖δ(s)‖2ds

+ |k|bp

∫ t

0
eγsE‖δ(s − τ1)‖2ds

+ σ(b, p)k2
∫ t

0
eγsE‖δ(s − τ2)‖2ds

+ γ

∫ t

0
eγsEV (s)ds. (39)

Note that V (s) ≤ λmax(P )‖δ(s)‖2 and for i = 1, 2,
∫ t

0 eγsE‖δ(s − τi)‖2ds ≤ τie
γτi sups∈[−τi ,0] E‖δ(s)‖2 +

eγτi
∫ t

0 eγsE‖δ(s)‖2ds. Then from (39), we obtain

eγ tEV (t) ≤ C0(γ) + h(γ)
∫ t

0
eγsE‖δ(s)‖2ds (40)

where C0(γ) = V (0) + (|k|bpτ1e
γτ1 + σ(b, p)k2τ2e

γτ2 )
sups∈[−τ ,0] E‖δ(s)‖2 , h(γ) = |k|bp − 1 + |k|bpe

γτ1 +
σ(b, p)k2eγτ2 + λmax(P )γ. Note that h(0) = 2|k|bp +
σ(b, p)k2 − 1 < 0, and h(γ1) ≥ |k|bp > 0, where γ1 satis-
fies kbpe

γ1 τ1 = 1. These produce that there exists γ∗ > 0
such that h(γ∗) = 0. Therefore, we obtain from (40) that
eγ ∗tE‖δ(t)‖2 ≤ C0(γ∗). Note that mean square exponential
stability implies almost sure exponential stability under a linear
growth condition (see [42]). Then, the desired assertions follow.
�

Proof of Theorem III.3: For the general flji , we
can obtain form the definition of δ(t) that dδ(t) =
[(IN −1 ⊗ A) − (Λ ⊗ BK)]δ(t)dt + dM̂3(t), where M̂3(t) =
∑d

l=1
∑N

i,j=1 aij

∫ t

0 [Q(i) ⊗ BKflji(xj (s − τ2) − xi(s −
τ2))dwlji(s)]. Note that δ(t) = [δ̃T

2 (t), ..., δ̃T
N (t)]T ,

dδ̃i(t) = (A − λiBK)δ̃i(t)dt + dM̃4,i(t), i = 2, . . . , N,

where M̃4,i(t) = (ηN,i ⊗ In )M̂3(t). In the following, we fix
certain i, and show that limt→∞ E‖δ̃i(t)‖2 > 0 for δ̃i(0) �= 0
without the stabilizability condition of (A,B). If (A,B) is
not stabilizable, then for any κ �= 0 and K, A − κBK is not
Hurwitz. Let κ = λi and AK := A − λiBK. Then, the desired
assertion can be proved by the similar skills used in the proof
of Lemma II.2. �

For the 2-D dynamics (including the second-order in-
tegrator systems in Section III-B), we denote xi(t) =
[yi(t), vi(t)]T ∈ R2 . Then, we use another variable transfor-
mation. Let y(t) = [y1(t), ..., yN (t)]T and v(t) = [v1(t), ...,
vN (t)]T . Denote δg (t) = (IN − JN )g(t), g = y, v, and δ(t) =
[δT

y (t), δT
v (t)]T . Let δg (t) = [δg1(t), ..., δgN (t)]T , where

δgi(t) ∈ R, i = 1, 2, ..., N . Let δq (t) = TLδ̃q (t) and δ̃q (t) =
[δ̃q1(t), ..., δ̃qN (t)]T , TL is defined before Proof of Theorem
III.1, then it can be verified that δ̃q1(t) ≡ 0, q = y, v. Denote

δq (t) = [δ̃q2(t), ..., δ̃qN (t)]T and δ(t) = [δ
T
y (t), δ

T
v (t)]T .

Proof of Theorem III.4: It is sufficient to show that with-
out the condition λN > 4β N −1

N σ2 , the mean square con-
sensus cannot be achieved for any K = [k1 , k2 ] ∈ R2 . We
first show that for any given K = [k1 , k2 ] ∈ R2 , the mean
square consensus implies k1 > 0, k2Λ − βIN −1 > 0. Note that
dv(t) = −k1Ly(t)dt − (k2L − βIN )v(t)dt + dM̄(t), where
M̄(t) = k1

∑N
i,j=1 aij ηN,i

∫ t

0 σji(yj (s) − yi(s)) dw1j i(s) +
k2
∑N

i,j=1 aij ηN,i

∫ t

0 σji(vj (s) − vi(s))dw2j i(s). By the def-

initions of δy and δv and τ1 = τ2 = 0, it suffices to examine the
mean square behavior of the following second-order SDE:

⎧
⎪⎨

⎪⎩

dδy (t) = δv (t)dt

dδv (t) = −k1Λδy (t)dt + dM̄1(t)

− (k2Λ − βIN −1)δv (t)dt + dM̄2(t)

(41)

where M̄1(t) = k1
∑N

i,j=1 aij

∫ t

0 Q(i)σji(δyj (s) − δyi(s))
dw1j i(s), M̄2(t) = k2

∑N
i,j=1 aij

∫ t

0 Q(i) σji(δvj (s) − δvi(s))
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dw2j i(s) and Q(i) = φT (IN − JN )ηN,i . Note that the mean
square consensus is equivalent to the mean square stability
of (41). However, the fact is that Brownian motions can
not contribute positively to the mean square stability of the
closed-loop system, that is, the unstable system can not be mean
square stabilized by Brownian motions (see [45]). Hence, in
order for the mean square stability of (41), the deterministic part
must be stable. Hence, in order for the mean square stability of

the SDE (41), the matrix L̄ = (
0 IN −1

−k1Λ βIN −1 − k2Λ
) must be

Hurwitz, which implies k1 > 0 and L22 := k2Λ − βIN −1 > 0.
Then, based on k1 > 0 and L22 := k2Λ − βIN −1 > 0, we

will show that the mean square consensus implies there is a
i such that hi(k2) := β − k2λi + k2

2σ2 N −1
N λi < 0. In fact, we

can choose the energy function as follows:

V1(t) = k1δ
T
y (t)Λδy (t) + ‖δv (t)‖2 . (42)

Applying the Itô formula to V1(t), we have

dV1(t) = − 2δ
T
v (t)L22δv (t)dt + d〈M̄1〉(t) + d〈M̄2〉(t)

+ 2δ
T
v (t)d[M̄1(t) + M̄2(t)] (43)

where 〈M̄1〉(t) = k2
1
∑N

i,j=1 aij

∫ t

0 ‖b1ij (s)‖2ds and 〈M̄2〉(t)
= k2

2
∑N

i,j=1 aij

∫ t

0 ‖b2ij (s)‖2ds, b1ij (t) = Q(i)σji(δyj (t) −
δyi(t))), b2ij (t) = Q(i)σji(δvj (t) − δvi(t)). Noting that (IN −
JN )(IN − JN ) = IN − JN , then we have Q

T
(i)Q(i) =

ηT
N,i(IN − JN )ηN,i = N −1

N . By the properties of undirected
graphs, we have the sum-of-squares (SOS) property ([7]):
δT
q (t)Lδq (t) = 1

2

∑N
i,j=1 aij‖δqj (t) − δqi(t)‖2 . Then, we get

d〈M̄1〉(t) ≥ k2
1σ2 N − 1

N

N∑

i,j=1

aij‖δyj (t) − δyi(t)‖2dt

= 2k2
1σ2 N − 1

N
δ

T
y (t)Λδy (t)dt (44)

and similarly,

d〈M̄2〉(t) ≥ 2k2
2σ2 N − 1

N
δ

T
v (t)Λδv (t)dt. (45)

Hence, taking expectations on the both sides of (43) and noting
that 〈M̄1〉(t) ≥ 0, we obtain

EV1(t) ≥ V1(0) + 2E

∫ t

0
δ

T
v (s)h(k2 ,Λ)δv (s)ds

where h(k2 ,Λ) := βIN −1 − k2Λ + k2
2σ2 N −1

N Λ. Hence, if
hi(k2) ≥ 0 for all i = 1, . . . , N , then h(k2 ,Λ) ≥ 0, and we
must have lim inf t→0 EV1(t) ≥ V1(0) > 0 for δ(0) �= 0. This
is in conflict with the definition of the mean square consensus.

Finally, we show that hi(k2) < 0 for certain i and k2 im-
plies λN > 4β N −1

N σ2 . Otherwise, λN ≤ 4β N −1
N σ2 , then we

must have hi(k2) := β − k2λi + k2
2σ2 N −1

N λi ≥ 0 for all i =
2, . . . , N and k2 ∈ R, which is a contradiction. �

Proof of Theorem III.5: We first transform the consensus
problem into the stability problem of a SDDE having the form
of (1). Then, we use Theorem II.1 to get the stability under the
given conditions by choosing a appropriate matrix P > 0.

Similar to (41), we have
⎧
⎪⎨

⎪⎩

dδy (t) = δv (t)dt

dδv (t) = −k1Λδy (t − τ1)dt + dM̄1(t)

−k2Λδv (t − τ1)dt + dM̄2(t)

(46)

where M̄1(t) = k1
∑N

i,j=1 aij

∫ t

0 Q(i)f1j i(δyj (s − τ2) −
δyi(s − τ2))dw1j i(s) and M̄2(t) = k2

∑N
i,j=1 aij

∫ t

0 Q(i)
f2j i(δvj (s − τ2) − δvi(s − τ2))dw2j i(s). Let L = L0 + L1
with

L0 =

[
0 IN −1

0 0

]

, L1 =

[
0 0

−k1Λ −k2Λ

]

.

Then, we have the following transformed SDDE:

dδ(t) = L0δ(t)dt + L1δ(t − τ1)dt + dM̄3(t) + dM̄4(t)
(47)

where M̄3(t) = k1
∑N

i,j=1 aij

∫ t

0 B1ij (s − τ2)dw1j i(s),
M̄4(t) = k2

∑N
i,j=1 aij

∫ t

0 B2ij (s − τ2)dw2j i(s), B1ij (t) =
[0, b1ij (t)]T , b1ij (t) = Q(i)f1j i(δyj (t) − δyi(t))),
B2ij (t) = [0, b2ij (t)]T , b2ij (t) = Q(i)f2j i(δvj (t) − δvi(t)).
Hence, in the following, we need to prove the mean square and
almost sure stability of SDDE (47).

To apply Theorem II.1, we choose

P =

[
μΛ θIN −1

θIN −1 IN −1

]

(48)

with μ, θ > 0 to be designed. In fact, we need
θ2 < μλ2 to guarantee the positive definiteness of P .
Let Θ1(t) = 〈M̄3 , PM̄3〉(t), Θ2(t) = 〈M̄4 , PM̄4〉(t), and
M̄34(t) = M̄3(t) + M̄4(t). By the properties of the sum-of-
squares (SOS) property ([7]), the similar estimations as (44)
and (45), and Assumption III.2, we get

dΘ1(t) = k2
1

N∑

i,j=1

aij‖b1ij (t − τ2)‖2dt

≤ 2k2
1 σ̄2

1
N − 1

N
δ

T
y (t − τ2)Λδy (t − τ2)dt

and similarly, dΘ2(t) ≤ 2k2
2 σ̄2

2
N −1

N δ
T
v (t − τ2)Λδv (t − τ2)dt.

Hence, d〈M̄34 , PM̄34〉(t) ≤ δ
T
(t − τ2)Uδ(t − τ2)dt, where

U = 2

[
k2

1 σ̄2
1

N −1
N Λ 0

0 k2
2 σ̄2

2
N −1

N Λ

]

.

By Theorem II.1, the mean square and almost sure stabil-
ity of (47) can be assured by S̄ := LT P + PL + (LT PL +
LT

1 PL1)τ1 + U < 0. It is easy to see

LT P + PL =

[
−2k1θΛ (μ − k1 − θk2)Λ

(μ − k1 − θk2)Λ 2(θIN −1 − k2Λ)

]

and LT PL + LT
1 PL1 =

[
2k2

1Λ2 2k1k2Λ2 − k1θΛ
2k1k2Λ2 − k1θΛ (μ − k2θ)Λ − k2θΛ + 2k2

2Λ2

]

.
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Let μ = k1 + k2θ + k1θτ1 . Note that
[

0 2k1k2Λ2

2k1k2Λ2 0

]

≤
[

2k2
1Λ2 0
0 2k2

2Λ2

]

.

Therefore, we have

S̄ ≤
[

s11(θ) 0
0 s22(θ)

]

,

where s11(θ) = −2k1θΛ +4k2
1Λ2τ1 + 2k2

1
N −1

N σ̄2
1Λ, s22(θ) =

2(θIN −1 − k2Λ) + (μ − k2θ)Λτ1 − k2θΛτ1 + 4k2
2Λ2τ1 +

2k2
2 σ̄2

2
N −1

N Λ. Then, we need s11(θ) < 0 and s22(θ) < 0. It is
easy to verify that θ > θ1 := 2λN k1τ1 + k1

N −1
N σ̄2

1 implies

s11 < 0, and θ < θ2 := 2k2 λ2 (1−k2 σ̄ 2
2

N −1
N )−(k1 λ2 +4k 2

2 λ2
N )τ1

2+k1 λN τ 2
1

im-

plies s22(θ) < 0. Note that condition (18) guarantees θ1 < θ2 ,
and then s11(θ) < 0 and s22(θ) < 0 for θ ∈ (θ1 , θ2).

We now show that the choice μ = k1 + k2θ + k1θτ1 with
θ ∈ (θ1 , θ2) can still guarantee the matrix P to be positive def-
inite. From θ2 < μλ2 and μ = k1 + θk2 + k1θτ1 , it is enough
to show that for θ ∈ (θ1 , θ2), θ2 − θλ2(k2 + k1τ1) − k1λ2 < 0.
This can be guaranteed under the condition 0 < θ < θ∗, where

θ∗ =
[
λ2(k2 + k1τ1) +

√
λ2

2(k2 + k1τ1)2 + 4k1λ2

]
/2. (49)

It is easy to see that θ2 < θ∗. That is, for any θ ∈ (θ1 , θ2),
we have P > 0 and S̄ < 0. Hence, from Theorem II.1 and the
definition of δ(t), the mean square and almost sure consensus
follow. �

Proof of Theorem III.6: The sufficiency follows directly
from Theorem III.5. Note that condition (20) contains three
parts: 1) k1 > 0, k2 > 0; 2) The choice of k2 should satisfy
1 − k2σ

2
2

N −1
N > 0; 3) Based on the choice of k2 , k1 must obey

k1σ
2
1

N −1
N < k2λN − k2

2σ2
2

N −1
N . The proof will be given ac-

cording to the three cases.
We first show that the necessity of k1 > 0, k2 > 0 for the

mean square consensus. Similarly to (41), in order for the mean
square stability of (47), the matrix L must be Hurwitz, which
implies k1 > 0 and k2 > 0. Then, we examine the necessity of
1 − k2σ

2
2

N −1
N > 0. By the definitions of δy (t) and δv (t) given

by (46) and the Itô formula to V1(t) given by (42), we have

dV1(t) = −2k2δ
T
v (t)Λδv (t)dt + d〈M̄1〉(t) + d〈M̄2〉(t)

+ 2δ
T
v (t)d[M̄1(t) + M̄2(t)] (50)

where 〈M̄1〉(t) = k2
1
∑N

i,j=1 aij

∫ t

0 ‖b1ij (s)‖2ds and 〈M̄2〉(t)
= k2

2
∑N

i,j=1 aij

∫ t

0 ‖b2ij (s)‖2ds. Using the similar estimations
of (44) and (45) and Assumption III.3, we can obtain

d〈M̄1〉(t) ≥ 2k2
1σ2

1
N − 1

N
δ

T
y (t)Λδy (t)dt (51)

and

d〈M̄2〉(t) ≥ 2k2
2σ2

2
N − 1

N
δ

T
v (t)Λδv (t)dt. (52)

Hence, integrating and taking expectations on the both sides of
(50) yield

EV1(t)≥V1(0)−2k2

(

1−k2σ
2
2
N −1

N

)

E

∫ t

0
δ

T
v (s)Λδv (s)ds

since 〈M̄1〉(t) ≥ 0 and 〈M̄2〉(t) ≥ 0. Therefore, if 1 − k2
σ2

2
N −1

N ≤ 0, we must have lim inf t→∞ EV1(t) ≥ V1(0) > 0 for
δ(0) �= 0. This together with the definitions of δ(t) and the
mean square consensus gives the necessity of the condition
1 − k2σ

2
2

N −1
N > 0.

Finally, we prove the necessity of k1σ
2
1

N −1
N < k2λN −

k2
2σ2

2
N −1

N . We choose the Lyapunov function

V2(t) = δ
T
(t)Pδ(t) (53)

where P is defined by (48). Applying the Itô formula to V2(t)
with δ(t) being defined by (47), and combining (51) and (52),
we can get

EV2(t) ≥ V2(0) + 2h1(μ, θ)E
∫ t

0
δ

T
y (s)Λδv (s)ds

+ 2E[
∫ t

0
δ

T
y (s)H̄2(θ)δy (s)ds +

∫ t

0
δ

T
v (s)H̄3(θ)δv (s)ds]

(54)

where h1(μ, θ) = μ − k1 − θk2 , H̄2(θ) = k2
1σ2

1
N −1

N Λ − k1θΛ
and H̄3(θ) = θIN −1 − k2Λ + k2

2σ2
2

N −1
N Λ. Note that k2λN −

k2
2σ2

2
N −1

N λN > 0, which is proved above. Let θ̄1 := k2λN −
k2

2σ2
2

N −1
N λN (> 0) and θ̄2 := k1σ

2
1

N −1
N ∧ θ∗, where θ∗ is de-

fined in (49) with τ1 = 0. It is easy to see that θ∗ > θ̄1 .
If k1σ

2
1

N −1
N < k2λN − k2

2σ2
2

N −1
N fails, we would have that

for any θ0 ∈ [θ̄1 , θ̄2 ], H̄2(θ0) ≥ 0 and H̄3(θ0) ≥ 0. Let μ =
k1 + k2θ0 , which together with θ0 < θ∗ gives P > 0. Then, it is
easy to deduce from (54) that lim inf t→∞ EV2(t) ≥ V2(0) > 0
for δ(0) �= 0, which is in conflict with the definition of the mean
square consensus. That is, condition (20) is necessary and the
proof is completed. �
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